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Abstract- This paper extends the author’s previous works
on quantum-inspired evolutionary algorithm (QEA). It
investigates the characteristics of QEA which is based on
the concept and principles of quantum computing such
as quantum bit and linear superposition of states. QEA
has many advantages such as automatic balance ability
between global search and local search, inclusion of indi-
vidual’s past history, having fewer individuals without de-
grading performance, less computation time, and clearer
termination-condition. The experimental results on the
knapsack problem are presented to verify these charac-
teristics of QEA.

Keywords: quantum-inspired algorithm, evolutionary
algorithm, quantum-inspired evolutionary algorithm,
knapsack problem, combinatorial optimization.

1 Introduction

Evolutionary algorithms (EAs) are principally a stochastic
search and optimization method based on the principles of
natural biological evolution. Compared to traditional opti-
mization methods, such as calculus-based and enumerative
strategies, EAs are robust, global and may be generally ap-
plied without recourse to domain-specific heuristic. Although
EAs lack theoretical background, the experimental results
show good performance in many areas. The three main-
stream methods of evolutionary computation which have
been established over the past thirty years are genetic algo-
rithms (GAs), developed by Holland [1], evolutionary pro-
gramming (EP), developed by Fogel [2], and evolution strate-
gies (ES), developed by Rechenberg and Schwefel [3].

EAs operate on a population of potential solutions, apply-
ing the principle of survival of the fittest to produce succes-
sively better approximations to a solution. At each gener-
ation of the EA, a new set of approximations is created by
the process of selecting individuals according to their level
of fitness in the problem domain and reproducing them using
operators borrowed from natural genetics. This process leads
to the evolution of populations of individuals that are better
suited to their environment than the individuals from which
they were created, just as in natural adaptation.

However, EAs have several disadvantages such as poor
balance ability of exploration and exploitation, and absence
of individual’s past history. In other words, a strong selective

pressure supports the premature convergence of the search; a
weak selective pressure can make the search ineffective [4].
And there is no past history of the information of evolving
individuals in EAs. In [5], we have already proposed the
basic structure of a quantum-inspired evolutionary algorithm
(QEA) which could solve these problems, and also proposed
a parallel quantum-inspired evolutionary algorithm for com-
binatorial optimization problems in [6]. The experimental re-
sults on the knapsack problem demonstrated the effectiveness
and the applicability of QEA [5, 6].

This paper investigates the characteristics of QEA. How
does QEA work?; Why does QEA have good performance?

This paper is organized as follows. In Section 2, we re-
view the previous work of quantum-inspired evolutionary al-
gorithm (QEA). Section 3 contains a description of the kanp-
sack problem. In Section 4, we investigate the characteristics
of QEA. Concluding remarks follow in Section 5.

2 Quantum-inspired Evolutionary Algorithm
(QEA)

QEA is based on the concepts of quantum bits and superposi-
tion of states [5]. The smallest unit of information stored in a
two-state quantum computer is called a quantum bit or qubit
[7, 8, 9]. A qubit may be in the ’1’ state, in the ’0’ state, or in
any superposition of the two. The classical representation can
be broadly classified as: binary, numeric, and symbolic [10].
QEA uses a new representation that is based on the concept of
qubits. QEA with the qubit representation has a better char-
acteristic of diversity than classical approaches, since it can
represent superposition of states. Convergence can also be
obtained with the qubit representation. As a qubit approaches
to 1 or 0, the qubit chromosome converges to a single state
and the property of diversity disappears gradually. That is,
the qubit representation is able to possess the two character-
istics of exploration and exploitation, simultaneously.

The basic structure of QEA is described in the following.

procedure QEA
begin

t 0

initialize Q(t)
make P (t) by observing Q(t) states
evaluate P (t)
store the best solution among P (t)



while (not termination-condition) do
begin

t t+ 1

make P (t) by observing Q(t� 1) states
evaluate P (t)
update Q(t) using quantum gates U(t)
store the best solution among P (t)

end
end

where Q(t) is a population of qubit chromosomes at genera-
tion t, and P (t) is a set of binary solutions at generation t.

In the step of ‘initialize Q(t),’ all qubit chromosomes are
initialized with the same constant. It means that one qubit
chromosome represents the linear superposition of all possi-
ble states with the same probability. The next step makes a
set of binary solutions, P (t), by observing Q(t) states. One
binary solution is formed by selecting each bit using the prob-
ability of qubit. And then each solution is evaluated to give
some measure of its fitness. The initial best solution is then
selected and stored among the binary solutions, P (t).

In the while loop, one more step, ‘update Q(t),’ is in-
cluded to have fitter states of the qubit chromosomes. A set of
binary solutions, P (t), is formed by observingQ(t�1) states
as with the procedure described before, and each binary so-
lution is evaluated to give the fitness value. In the next step,
‘update Q(t),’ a set of qubit chromosomes Q(t) is updated
by applying some appropriate quantum gates U(t), which is
formed by using the binary solutions P (t) and the stored best
solution. The appropriate quantum gates can be designed in
compliance with practical problems. Rotation gate is used as
a basic gate of QEA. This step makes the qubit chromosomes
converge to the fitter states. The best solution among P (t)

is selected in the next step, and if the solution is fitter than
the stored best solution, the stored solution is replaced by the
new one. The binary solutions P (t) are discarded at the end
of the loop.

3 Knapsack Problem

The knapsack problem, a kind of combinatorial optimization
problem, is used to investigate the characteristics of QEA.
The knapsack problem can be described as selecting from
among various items those items which are most profitable,
given that the knapsack has limited capacity. The 0-1 knap-
sack problem is described as: given a set of m items and a
knapsack, select a subset of the items so as to maximize the
profit f(x):

f(x) =

mX

i=1

pixi;

subject to
mX

i=1

wixi � C;

where x = (x
1
� � �xm), xi is 0 or 1, pi is the profit of item

i, wi is the weight of item i, and C is the capacity of the
knapsack.

4 Characteristics of QEA

The knapsack problem described before was used to analyze
the characteristics of QEA. For the purpose of the analysis,
the knapsack problem with 10 items was considered in this
Section. While selecting a subset from the 10 items, there ex-
ist 210 cases. Figure 1 shows the profit value of 1024 cases
in the knapsack problem. For this problem, the best profit is
62.192938 at the 127th. So as to investigate the characteris-
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Figure 1: Profit value of 1024 cases in the knapsack problem
with 10 items. (The best profit is marked with O.)

tics of QEA, we set the population size of the qubit chromo-
some at one. Figure 3 shows the probability of 1024 cases
using the qubit chromosome at generation 10, 20, 30, 40, 50,
100, 200, and 300. In (a) and (b) of Figure 3, the horizontal
lines valued at about 0.001 show the initialized probability of
all the solutions. It means that the initialized qubit chromo-
some includes all solutions with the same probability. That
is, it means that QEA starts with a random search initially.

The result at generation 10 was interesting. Even though
the size of qubit chromosome was one, the probability of
1024 cases had a similar pattern to the profit value of Figure
1. That is, the only one chromosome was able to include the
information of 1024 cases. At generation 20, the probability
increased on the whole. At generation 30 to 50, the probabil-
ity of the cases with large profit increased on a large scale. At
generation 100, however, all peak value decreased except the
peak of the best solution. The same features were obtained
at generation 200. At generation 300, the probability of the
best solution was over 0.9, and that of the other solutions was
about 0. That is, the qubit chromosome had almost converged
to the best solution.

The results above can be summarized as follows. Initially,
QEA starts with a random search, and the pattern of all cases
is then caught gradually. The probability of the cases with



large profit increases, and it changes into a local search step
by step. Finally, the probability of the qubit chromosome
converges to the best solution. That is, QEA starts with a
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Figure 2: QEA operation.

global search and changes automatically into a local search
because of its structural characteristics. Since a qubit chro-
mosome can include the individual’s past history, the pattern
of all cases can be caught in spite of starting with one chro-
mosome.

The characteristics of QEA can be summarized as follows.
(a) Automatic balance ability between global search and

local search (due to the characteristics of QEA structure).
(b) Inclusion of individual’s past history (due to the prob-

abilistic representation).
(c) Fewer individuals without loss of performance (due to

the linear superposition of the states).
(d) Less computation time.
(e) Clearer termination-condition.

(for example, Prob(b) > 
, where 0 < 
 < 1 and Prob(b)
can be calculated easily by using the probability of a qubit
chromosome.)

5 Conclusions

This paper investigated the characteristics of QEA which is
based on the concept of quantum computing such as qubit and
superposition of states. QEA can represent linear superposi-
tion of states, and there is no need to include many individu-
als. QEA has excellent global search ability due to its diver-
sity caused by the probabilistic representation, and possesses
fast convergence to the best solution due to the inclusion of
individual’s past history. It also has a clearer termination-

condition and less computation time. The experimental re-
sults on the knapsack problem verified these characteristics
of QEA.
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Figure 3: Probability of all solutions using qubit chromosome.


